How to Encourage Personal Science?

I wonder how to encourage personal science (= science done to help yourself or a loved one, usually for health reasons). Please respond in the comments or by emailing me.

An obvious example of personal science is self-measurement (blood tests, acne, sleep, mood, whatever) done to improve what you’re measuring. Science is more than data collection and the data need not come from you. You might study blogs and forums or the scientific literature to get ideas. Self-measurement and data analysis by non-professionals is much easier than ever before. Other people’s experience and the scientific literature are much more available than ever before. This makes personal science is far more promising than ever before.

Personal science has great promise for reasons that aren’t obvious. It seems to be a balancing act: Personal science has strengths and weakness, professional science has strengths and weaknesses. I can say that personal scientists can do research much faster than professionals and are less burdened with conflicts of interest (personal scientists care only about finding a solution; professionals care about other things, including publication, grants, prizes, respect, and so on). A professional scientist might reply that professional scientists have more training and support. History overwhelming favors professional science — at least until you realize that Galileo, Darwin, Mendel, and Wegener (continental drift) were not professional scientists. (Galileo was a math professor.) There is very little personal science of any importance.

These arguments (balancing act, examination of history) miss something important. In a way, it isn’t a balancing act. Professional science and personal science do different things. In some ways history supports personal science. Let me give an example. I believe my most important discovery will turn out to be the effect of morning faces on mood. The basic idea that my findings support is that we have a mood control system that requires seeing faces in the morning to work properly. When the system is working properly, we have a circadian rhythm in mood (happy, eager, serene during the day, unhappy, reluctant, irritable at night). The strangest thing is that if you see faces in the morning (e.g, 7 am) they have no noticeable effect until 6 pm the same day. There is a kind of uncanny valley at work here. If you know little about mood research, this will seem unlikely but possible. If you are an average professional mood researcher, it will seem much worse: can’t possibly be true, total nonsense. If you know a lot about depression research, however, you will know that there is considerable supporting research (e.g., in many cases, depression gets better in the evening). It will still seem very unlikely, but not impossible. However, if you’re a professional scientist, it doesn’t matter what you think. You cannot study it. It is too strange to too many people, including your colleagues. You risk ridicule by studying it. If you’re a personal scientist, of course you can study it. You can study anything.

This illustrates a structural problem:

2013-02-28 personal & professional science in plausibility space

This graph shows what personal and professional scientists can do. Ideas vary in plausibility from low to high; data gathering (e.g., experiments) varies in cost from low to high. Personal scientists can study ideas of any plausibility, but they have a relatively small budget. Professional scientists can spend much more — in fact, must spend much more. I suppose publishing a cheap experiment would be like wearing cheap clothes. Another limitation of professional scientists is that they can only study ideas of medium plausibility. Ideas of low plausibility (such as my morning faces idea) are “crazy”. To take them seriously risks ridicule. Even if you don’t care what your colleagues think, there is the additional problem that a test of them is unlikely to pay off. You cannot publish results showing that a low-plausibility idea is wrong. Too obvious. In addition, professional scientists cannot study ideas of high plausibility. Again, the only publishable result would be that your test shows the idea is wrong. That is unlikely to happen. You cannot publish results that show that something that everybody already believes is true.

It is a bad idea for anyone — personal or professional scientist — to spend a lot of resources testing an idea of low or high plausibility. If the idea has low plausibility, the outcome is too likely to be “it’s wrong”. There are a vast number of low-plausibility ideas. No one can afford to spend a lot of money on one of them. Likewise, it’s a bad idea to spend a lot of resources testing an idea of high plausibility because the information value (information/dollar) of the test is likely to be low. If you’re going to spend a lot of money, you should do it only when both possible outcomes (true and false) are plausible.

This graph explains why health science has so badly stagnated — every year, the Nobel Prize in Medicine is given for something relatively trivial — and why personal science can make a big difference. Health science has stagnated because it is impossible for professionals to study ideas of low plausibility. Yet every new idea begins with low plausibility. The Shangri-La Diet is an example (Drink sugar water to lose weight? Are you crazy?). We need personal science to find plausible new ideas. We also need personal science at the other extreme (high plausibility) to customize what we know. Everyone has their quirks and differences. No matter how well-established a solution, it needs to be tailored to you in particular — to what you eat, when you work, where you live, and so on. Professional scientists won’t do that. My personal science started off with customization. I tested various acne drugs that my dermatologist prescribed. It turned out that one of them didn’t work. It worked in general, just not for me. As I did more and more personal science, I started to discover that certain low-plausibility ideas were true. I’d guess that 99.99% of professional scientists never discover that a low-plausibility idea is true. Whereas I’ve made several such discoveries.

Professional scientists need personal scientists to come up with new ideas plausible enough to be worth testing. The rest of us need personal scientists for the sake of our health. We need them to find new solutions and customize existing ones.

 

 

 

Assorted Links

  • An Epidemic of Absence (book about allergies and autism)
  • Professor of medicine who studies medical error loses a leg due to medical error. “Despite calls to action by patient advocates and the adoption of safety programs, there is no sign that the numbers of errors, injuries and deaths [due to errors] have improved.” Nothing about consequences for the person who made the error that caused him to lose a leg.
  • Doubts about spending a huge amount of research money on a single project (brain mapping). Which has yet to produce even one useful result.
  • Cancer diagnosis innovation by somebody without a job (a 15-year-old)
  • Someone named Rob Rhinehart has greatly reduced the time and money he spends on food by drinking something he thinks contains all essential nutrients. Someone pointed out to him that he needs bacteria, which he doesn’t have. (No doubt several types of bacteria are best.) He doesn’t realize that Vitamin K has several forms. I suspect he’s getting too little omega-3. This reminds me of a man who greatly reduced how much he slept by sleeping 15 minutes every 3 hours. It didn’t work out well for him (his creativity vanished and he became bored and unhappy). In Rhinehart’s case, I can’t predict what will happen so it’s fascinating. When something goes wrong, however, I’ll be surprised if he can figure out what caused the problem.

Thanks to Amish Mukharji.