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Variation of bar-press duration: Where do new responses come from?
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Abstract

Instrumental learning involves both variation and selection: variation of what the animal does, and selection by reward from among the variation.
Four experiments with rats suggested a rule about how variation is controlled by recent events. Experiment 1 used the peak procedure. Measurements
of bar-press durations showed a sharp increase in mean duration after the time that food was sometimes given. The increase was triggered by the
omission of expected food. Our first explanation of the increase was that it was a frustration effect. Experiment 2 tested this explanation with a
procedure in which the first response of a trial usually produced food, ending the trial. In Experiment 2, unlike Experiment 1, omission of expected
food did not produce a large increase in bar-press duration, which cast doubt on the frustration explanation. Experiments 3 and 4 tested an alternative
explanation: a decrease in expectation of reward increases variation. Both used two signals associated with different probabilities of reward. Bar
presses were more variable in duration during the signal with the lower probability of reward, supporting this alternative. These experiments show
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ow variation can be studied with ordinary equipment and responses.
2006 Elsevier B.V. All rights reserved.
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Instrumental learning is usually thought of as a feed-
ack system: the effect of a response controls its likelihood.
ackintosh (1983), for example, said that “instrumental condi-

ioning [occurs] when (a) change in behavior is a consequence of
contingency between that behavior and the reinforcer” (p. 77).
ccording to Dickinson (1994), “instrumental behavior refers

o those actions whose acquisition and maintenance depend on
heir consequences for the animal” (p. 45). However, this way of
hinking is incomplete. Instrumental learning involves both vari-
tion and selection (Hull et al., 2001; Staddon, 1983; Staddon
nd Simmelhag, 1971). The feedback view says nothing about
ariation—that is, it says nothing about where new responses
ome from.

Variation can be where, when, or how—variation of location,
iming, or topography. Early studies of variation tended to mea-
ure topography. For example, Antonitis (1951) studied variation
n the topography of nose pokes. The raw data were 6600 pho-
ographs. Iversen (2002) did something similar with a digital
amera. Recent studies of variation have usually involved loca-
ion (e.g., Neuringer, 2002). For example, Page and Neuringer

(1985) looked at sequences of responses in two locations. Vari-
ation was indexed by the number of different sequences that
occurred.

Both sorts of studies have disadvantages. Photographs must
be quantified by hand—at least, no one has quantified them by
computer. This is very time-consuming. On the other hand, if
you measure variation by number of sequences, the “response”
whose variation is measured becomes more artificial the longer
the sequence; the longer the sequence the harder it is to gener-
alize to individual responses. Machado (1997) concluded that
when you increase sequence variability by rewarding it you
cause the animal to adjust its probability of switching from one
key to the other. Another problem with using sequences to mea-
sure variation is granularity. If you study sequences of length 4
with 2 keys, there are only 16 possible sequences.

This article reviews our work on variation (Gharib et al., 2001,
2004). Our experiments do two things: (a) show how to study
variation with standard equipment and a conventional response
in a completely automated way and (b) suggest a new rule about
the control of variation. The most firmly established generaliza-
tion about variation has been that it increases during extinction
∗ Corresponding author. Tel.: +1 510 418 7753; fax: +1 267 222 4105.
E-mail address: twoutopias@gmail.com (S. Roberts).

(e.g., Antonitis, 1951; Balsam et al., 1998; Iversen, 2002). But
there are several differences between training and extinction:
density of reward, rate of response, and expectation of reward,
to name a few. It is unclear which difference or differences cause
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the increase in variability. Our work points to one of them: the
decrease in expectation of reward.

We came to study variation by accident—at first, without
realizing it. In experiments similar to Experiment 1 of this arti-
cle, we noticed a large change in bar-press duration. Experiment
2 showed that our first explanation of this change was wrong.
We eventually thought of another explanation, which Experi-
ment 3 tested. The results supported the new explanation, but
the experiment had a serious flaw. When the flaw was fixed, in
Experiment 4, support for the new explanation was quite clear.

1. Experiment 1: peak-procedure puzzle

This experiment used the peak procedure (Catania, 1970;
Roberts, 1981), which resembles a discrete-trials fixed-interval
schedule. Trials are indicated by the onset of a signal, such as a
house light. On most trials, the first response after a fixed time
(here, 40 s) is rewarded and the signal ends when food is given;
these are called food trials. On the remaining trials (empty tri-
als), the signal lasts a long time (much longer than 40 s) and
ends without food independently of what the animal does.

The results shown in Fig. 1 are from 2 groups of 18 rats each.
The response was pressing a bar. One group was observed for
forty-eight 6-h sessions (0.7 million responses), the other for one
hundred and twenty-four 6-h sessions (2.8 million responses).
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Fig. 2. Experiment 1: Response durations before and after omission as a function
of time from the start of the signal. After omission = second and later response
after 40 s on empty trials. Before omission = all earlier responses on empty trials,
and all responses on food trials. The points are spaced so that each point is based
on about 12,000 responses.

seemed to be a mistake. The rate function was symmetric around
the time of food (about 45 s after the start of the trial). In con-
trast, the duration function was highly asymmetric around that
time.

The most striking feature of the duration function was the
sharp rise that began at about the time of food. An analysis
showed that this increase was triggered by one event: the omis-
sion of expected food (Fig. 2). When a rat pressed the bar after
Second 40 (that is, more than 40 s after the start of the trial), it
did not yet know whether the current trial was food or empty.
If this particular bar press was not rewarded, there would be no
food for the rest of the trial. Fig. 2 divides responses into two
groups: (a) all responses up to and including the first response
after Second 40 (before omission) and (b) all the responses after
that (after omission). Fig. 2 shows that bar presses up to and
including the first one after Second 40, no matter how late in
the trial, did not increase in duration over time. It was only bar
presses after the first bar press after Second 40 that had longer
durations.

That the rise in duration was triggered by omission of
expected food led to our first explanation of the cause of the
rise: it was a frustration effect. Amsel and Roussel (1952) and
many others had found that omission of expected food in the
first goal box of a double runway caused rats to run faster on the
second runway (Amsel, 1962). Perhaps omission of expected
food also caused rats to hold the bar down for a longer period of
t
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Most uses of the peak procedure (e.g., Roberts, 1981) have
ocused on the time discrimination it produces—the change in
ar-press rate as a function of time (upper panel of Fig. 1). The
ower panel of Fig. 1 shows something else: bar-press duration

the length of time that the bar is held down – as a function
f time. In all of these experiments, food was given after the
ever was pressed down and released—so bar-press durations
ere unaffected by the delivery of food. We had no theoretical

eason for looking at this graph; we just hoped it would tell us
omething new (Roberts, 1984).

The duration function (lower panel) was a great surprise—so
ifferent from the rate function (upper panel) that at first it

ig. 1. Experiment 1: Response rate (upper panel) and response duration (lower
anel) as a function of time since the start of the signal. Points in the duration
unction are unequally spaced along the time axis so that each point will represent
oughly the same number of responses. Each point in the lower panel is based
n about 4000 (Replication 1) or 8000 (Replication 2) responses/rat.
ime.

. Experiment 2: test of frustration hypothesis

If the frustration hypothesis is correct, any omission of
xpected food should produce a duration increase. In Experiment
, we tested this prediction with a simple procedure. Intertrial
ntervals were dark. Now and then a light went on. The next
ar press turned off the light and, with probability 0.8, was
ewarded with a food pellet. When no food was given – that
s, when expected food was omitted – would there be a dura-
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Fig. 3. Experiment 2: Response rate (upper panel) and response duration (lower
panel) as a function of time before, during, and after the signal. Each point is
a 10% trimmed mean over 18 rats. Data during the signal is represented by
triangles.

tion increase similar to Experiment 1’s (lower panel of Fig. 1)?
Between trials, responses were rewarded on a random-interval
100 s schedule. (That is, reward was “primed” with probability
0.01 each second. When reward was primed, the next response
produced reward.) We rewarded responses with a low probabil-
ity (rather than give no reward at all) to make it easier to see a
duration increase.

The results were not what we expected. The upper panel of
Fig. 3 shows bar-press rates before, during, and after trials; the
lower panel shows bar-press durations. There was only a small
and short-lived increase in response duration after the omission
of expected food, in great contrast to the results of Experiment
1.

The frustration hypothesis – which we had believed (Roberts,
1998) – was apparently wrong. Something unknown to us, trig-
gered by a single unrewarded response, had produced a large
and long-lasting change in response duration. This was a real
mystery.

Re-examination of the results of Experiment 1 suggested a
possible answer. Fig. 4 shows the distribution of durations before
and after food omission (with both x and y coordinates logarith-
mic). The increase in mean duration seen in Fig. 1 was due to
a large increase in the variability of a very skewed distribution.
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Fig. 5. Experiment 1: How food omission changed the spread of the distribution
of response durations. Each point is a 10% trimmed mean over 36 rats. The
percentiles were computed separately for each rat, then averaged across rats.

Fig. 5, which shows percentiles of the distribution as a func-
tion of time into the trial, makes the same point. The distance
between the 10th percentile and the 90th percentile (a measure
of spread) increased a great deal from early until late in the trial.

Thinking of the increase in bar-press duration as an increase
in variability suggested a new explanation of it. A striking feature
of the duration increase was how long it lasted: until the end of
the trial (or at least the measurement period). Non-delivery of
food for the first response after Second 40 was not only a source
of frustration but also a discriminative stimulus: it signaled no
reward for the rest of the trial. If a rat learned this discrimination
and remembered the event, the omission of expected food would
cause a sharp drop in expectation of food for the rest of the trial.

Perhaps reducing expectation of reward increases variability.
This proposal had three things in its favor. First, it explained
the time course of the duration increase. Because the reduced
expectation lasted the rest of the trial, so should the duration
increase. Second, it made conceptual sense. Variation has costs
and benefits. As the expectation of reward goes down, the cost of
variation decreases—so the amount of variation should increase.
Nothing restricts this reasoning to animal behavior; Section 5
describes similar empirical rules in genetics and business. Third,
the novelty of the idea roughly matched the strength of the effect.
The effect was very strong, t(35) = 18 for comparison of the two
distributions in Fig. 4. In a relatively unstudied area, such as
variation, there might be large effects not yet discovered. In a
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ig. 4. Experiment 1: How food omission changed the distribution of response
urations. Each point is a median over 36 rats. Standard errors were computed
sing the jackknife.
ell-studied area, such as selection by reward, this was unlikely.
Other results of Experiment 2 gave the proposal more sup-

ort. First, trial versus intertrial interval. The probability that a
ar press would be rewarded was much higher during a trial (0.8)
han between trials (0.07), so expectation of reward should have
een greater during a trial than between trials. The new idea cor-
ectly predicted that durations were less variable during a trial
upper panel of Fig. 6). Second, after reward versus after nonre-
ard. Between trials, expectation of reward was surely greater
fter a rewarded response than after an unrewarded response.
he new idea correctly predicted that durations were less vari-
ble after a rewarded response (lower panel of Fig. 6). Third,
ontext specificity of the reward/nonreward effect. When a trial
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Fig. 6. Experiment 2: Distribution of response durations before and during the
signal (upper panel) and 30–40 s after rewarded and unrewarded responses dur-
ing the intertrial interval (lower panel). Each point is a median over 18 rats.

ended with food, this should have increased expectation of food
during future trials but not during the upcoming intertrial inter-
val. As this predicts, the effect of reward/nonreward did not
extend to a different context. There was no reliable difference in
duration between intertrial responses after a trial that ended with
food and intertrial responses after a trial that ended without food.
The interaction (reward/nonreward by location of reward—end
of trial or intertrial interval) was reliable.

3. Experiment 3: test of expected-reward hypothesis
(first try)

To test the new idea – less expectation of reward, more
variation – we varied expectation of reward in the simplest
well-controlled way we could think of. Experiment 3 used a
discrete-trials procedure with two signals. During both signals,
the end of the trial was “primed” with probability 1/60 each
second—like a random-interval schedule. Once the end of the
trial was primed, the next bar press ended the trial. The main
comparison was between signals. High-food trials (one signal)
always ended with food. Low-food trials (the other signal) ended
with food with probability 1.0 during an initial baseline phase,
with probability 0.50 during the first treatment phase, and with
probability 0.25 during the second treatment phase. Between
trials, no responses were rewarded.

p
m
(

Fig. 7. Experiment 3: Bar-press rate (upper panel) and duration (lower panel) as
a function of day and signal. Method of computation: 1. The days of each phase
were divided into blocks close to 5 days long. 2. For each rat-signal-block com-
bination, the mean of the logarithm of all rates (upper panel) or durations (lower
panel) was computed. 3. For each signal-block combination, a 10% trimmed
mean over rats was computed.

Puzzled that the results were not clearer, we realized there
was a problem with the procedure: the more time since the pre-
vious response, the more likely that the end of the trial has been
primed—thus the more likely the next response will be rewarded.
If the rats measured the time since their last response, they could
notice that the probability of reward increased as this time grew,
and their expectation of food could grow. Although reward/time
was less during the low-food signal than during the high-food
signal, reward/response was not necessarily lower. Perhaps the
expectation of reward that controlled variation depended on
reward/response, not reward/time.

Analysis of the results according to interresponse time
(Fig. 8) supported this conclusion. The top panel shows
that response duration depended on the time since the last
response. As interresponse time increased, mean response dura-
tion decreased (meaning that variation decreased), support-
ing the idea that the rats were measuring time since their
last response. The middle panel shows how the probability of
reward per bar press increased with interresponse time. The bot-
tom panel combines the top two panels to show that duration
decreased as probability of reward increased. Fig. 9 is the same
as the bottom panel of Fig. 8 except that it shows the 10th and
90th percentiles of the distributions rather than the means, in
order to make clear the decrease in variation (here, the distance
between the 10th percentile and the 90th percentile) increases
with probability of reward. As Gharib et al. (2004) wrote, sum-
m

Fig. 7 shows the results. The duration results were in the
redicted direction but weakly so. Only during the second treat-
ent phase was the difference between the two signals reliable

one-tailed p < 0.05).
 arizing the bottom panel of Figs. 8 and 9, “duration differences
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Fig. 8. Experiment 3: Effect of interresponse time. Top panel: Duration as a
function of interresponse time. Middle panel: Probability of reward as a function
of interresponse time. Bottom panel: Duration as a function of probability of
reward. Duration and interresponse times are on a log scale, probability of reward
on a square-root scale. The 100/50% data are from the last 15 days of that phase;
the 100/25% data are from the last 20 days of that phase. Method of computation:
1. For each rat-signal combination (14 rats, 4 signals), all interresponse times
were gathered, ranked, and divided into 8 equal-sized bins by rank, a total of
448 bins. (To show as clearly as possible the correlation between interresponse
time and probability of reward, the first bar press during a signal was given an
interresponse time equal to the time since the signal began.) One group contained
all interresponse times between the minimum and the 12.5% quantile; the next,
all interresponse times between the 12.5% quantile and the 25% quantile, and so
forth. 2. For each group, the mean of the log interresponse times was computed
(448 means, 32 per rat). 3. The 10% trimmed mean over rats was computed to
summarize each bin (32 trimmed means). 4. For each rat-signal-bin combination,
the mean log duration was computed, then averaged over rats to get 32 values.
5. For each rat-signal-bin combination, the probability of reward was computed,
then averaged over rats to get 32 values. 6. Responses during intertrial intervals
were not divided by interresponse time because there were too few of them.
The average duration for interresponse time was computed by taking the mean
within rats and a trimmed mean over rats.

between the conditions are almost entirely explained by differ-
ences in the probability of reward” (p. 275). We had varied the
wrong thing. We had varied density of reward between the sig-
nals; we should have varied probability of reward.

4. Experiment 4: test of expected-reward hypothesis
(second try)

Experiment 4 fixed the problem. It closely resembled Exper-
iment 3. The main difference was that trials ended with a fixed

Fig. 9. Experiment 3: 10% and 90% quantiles of duration distributions as a
function of probability of reward. These values were computed in the same way
as the values in the bottom panel of Fig. 8, except that each set of durations was
summarized by the 10% and 90% quantiles rather than by the mean.

probability (0.25) for each response. This meant that, unlike
Experiment 3, the probability of reward did not vary with inter-
response time. Again, there were two types of trials, high food
and low food, indicated by different signals (light and sound).
All high-food trials ended with food. During a baseline phase,
low-food trials ended with food with probability 1.0; during
the treatment phase, they ended with food with probability
0.25.

This produced much clearer results (Fig. 10). Reducing the
probability of reward clearly increased response duration. The

Fig. 10. Experiment 4: Bar-press rate (upper panel) and duration (lower panel)
as a function of day and signal. Same method of computation as Fig. 7.
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Fig. 11. Experiment 4: Distribution of bar-press durations as a function of sig-
nal. Upper panel: Probability density functions. Method of computation: 1. The
minimum and maximum duration over all rats and signals were used to deter-
mine an interval. 2. The interval was divided into 10 (high-food function) or
8 (low-food and intertrial functions) segments of equal width on a log scale.
For each function, the number of segments was the maximum that would not
produce any 0 probabilities in the final result. A probability of 0 is hard to show
on a log scale. 3. These bin definitions were used to determine frequencies for
each rat. 4. Frequencies were converted to probabilities by dividing by sample
size. 5. Probabilities were converted to probability densities by dividing by bin
width on the untransformed scale (seconds, not log seconds). 6. For each bin, a
median was computed over rats. Lower panel: Inverse cumulative distribution
functions. Method of computation: 1. The function was computed for each rat
separately. 2. For each abscissa value, a median was computed over rats.

difference in duration between the two signals (t(10) = 6.22,
based on the last 25 days of the treatment phase) was as clear as
the difference in rate (t(10) = 6.07). Fig. 11 shows the distribu-
tion of bar-press durations. The lower the probability of reward,
the greater the variation.

More support for an effect of reward expectation on vari-
ation comes from a within-signal comparison: low-food trials
after many unrewarded bar-presses (less expectation) versus the
same trials after 0 or only a few unrewarded bar-presses (more
expectation). To make this comparison, we calculated the num-
ber of consecutive unrewarded bar presses during the low-food
signal at the beginning of every trial. This number “labels”
the trial, whether low-food or high-food, and all bar presses
during that trial are classified using that label. Whenever the
most recent low-food trial has ended with reward, this number

is reset to 0. It increases when a low-food trial ends without
reward; if the low-food trial contained five responses (all unre-
warded), then this number increases by 5 after the trial ends. It
does not change during a trial and is unaffected by high-food
trials. Suppose that this number is 0 at the start of a session.
The first trial (low-food) ends without reward after five bar
presses. Now the number is 5. The second trial (high-food) ends
with reward after three bar presses. The number remains 5. The
third trial (low-food) ends without reward after 10 bar presses.
Now the number is 15. The fourth trial (low-food) ends with
reward. Now the number is 0 again. In general, the number mea-
sures how much “extinction” the low-food signal has recently
experienced.

Fig. 12 shows how recent extinction affects rate (upper panel)
and duration (lower panel) during both signals. The most impor-
tant finding is that duration during the low-food signal increased
as recent extinction increased, t(10) = 2.88, p < 0.01. The asso-
ciative nature of the effect is shown by the fact that there was
no reliable increase during the high-food signal and there was
a reliable signal-by-recent-extinction interaction, t(10) = 2.96,
p < 0.01. That the effect was associative supports the idea that it
is due to expectancy.

Fig. 12. Experiment 4: Effect of recent consecutive unrewarded bar-presses
during the low-food signal on bar-press rate (upper panel) and duration (lower
panel). Every trial was classified according to the number of consecutive unre-
warded bar-presses during the low-food signals that immediately preceded it.
Values on the abscissa are plotted according to log(1 + x), where x is the number
of unrewarded bar presses. For example, the value for 0 is plotted above log 1,
the value for 10 above log 11, and so on. Values within a bin are assigned the
geometric mean of the edges of the bin. For example, the right-most bin contains
data from trials preceded by 31–140 unrewarded bar presses during the low-food
signal. The geometric mean of 31 and 140 is 66, which is plotted above log 67.
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Table 1
Effects of reward expectation on bar-press duration

Expt Figure(s) Reward expectation t

More Less

1 Figs. 1, 4 and 5 Early in trial Late in trial 18.3
2 Figs. 3 and 6 During trial Between trials 4.7
2 Fig. 6 After rewarded response After unrewarded response 3.2
3 Figs. 7 and 9 High-food signal Low-food signal (25%) 3.0
3 Figs. 7 and 9 Low-food signal Intertrial interval 4.4
3 Figs. 8 Long after response Soon after response 10.0, 9.6
4 Figs. 10 and 11 High-food signal Low-food signal 6.2
4 Figs. 10 and 11 Low-food signal Intertrial interval 4.6
4 Fig. 12 Few prior unrewarded responses Many prior unrewarded responses 2.9

Note: In each case, the condition with less reward expectation produced longer (more variable) bar-press durations. The t-values are for the comparison of the two
conditions. They come from Gharib et al. (2001) and Gharib et al. (2004).

5. General discussion

5.1. Control of variation by reward expectation

The results support the general rule that reducing reward
expectation increases variation of response form. This rule pre-
dicted or explains nine differences in bar-press duration, summa-
rized in Table 1, which gives in each case the two conditions that
differed in reward expectation and the t-value for the duration
difference. None of the comparisons of Table 1 is “pure” (uncon-
founded); the two conditions always differed in other ways as
well. But it seems safe to say the difference in reward expectation
is the only difference present in every case.

The most plausible alternative explanation of Table 1’s results
is probably that a decrease in rate increases variation. In most
cases, expectation and rate were positively correlated, as you
would expect: when expectation was lower, rate was lower. In
Experiment 3, however, because of the interval schedule, longer
interresponse times (=lower rate) were associated with a greater
probability of reward. In this situation, the rule lower rate, more
variation predicted the opposite of lower reward expectation,
more variation. And it was the reward-expectation rule that pre-
dicted correctly: longer interresponse times were associated with
less variation (Fig. 8). Gharib et al. (2001) describe several other
reasons to believe that rate has little effect on variation.

The rule less expectation of reward, more variation explains
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case supporting the new rule expectancy of reward was varied by
varying probability of reward. The answer is that you can vary
expectancy while keeping probability of reward constant—by
increasing delay of reward, for example. Conclusions about
expectancy lead to predictions, in other words, that conclusions
in terms of probability of reward do not.

5.2. Similar rules in other areas

The rule less expectation of reward, more variation has par-
allels in genetics and business (Gharib et al., 2004). In genetics,
Susan Lindquist and her colleagues have found that a simi-
lar rule holds true. It began with the discovery of what are
called heat shock proteins in fruit flies. When a fly is exposed
to warm temperature or other environmental stressors, these
proteins function differently. In the case of one heat-shock pro-
tein, Hsp90, the change is an increase in phenotypic variation
(Queitsch et al., 2002; Rutherford and Lindquist, 1998). Usu-
ally this protein prevents mutations from producing phenotypic
changes. In the absence of expression (and therefore selection),
the genetic changes build up, forming a kind of reserve. During
times of stress, when these mutations might be beneficial rather
than harmful, they are expressed. “The buffered variation is
therefore released precisely under those challenging conditions
when selection is most stringent (i.e., the chance of success-
ful reproduction is less than usual) and novelty might be most
b
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he well-established finding that variation increases during
xtinction (Balsam et al., 1998; Neuringer, 2002) because expec-
ation of reward decreases during extinction. Support for the rule
omes from a wide range of responses, including rat nose pokes
Antonitis, 1951), sequences of responses made by rats (Balsam
t al., 1998; Cherot et al., 1996) and pigeons (Schwartz, 1982),
nd the location of pigeon key pecks (Eckerman and Lanson,
969; Ferraro and Branch, 1968; Millenson et al., 1961). In the
eak procedure, lowering the probability of reward increases the
pread of the response-rate function—that is, responses become
ore variable in time (Roberts, 1981). So the rule seems to apply

o all three types of variation (location, timing, and topography).
One reviewer asked: what does your invocation of expectancy

uy you? Why not just talk about the relation of probability of
eward and variation? This is a fair question because in every
eneficial” (Sangster et al., 2004, p. 356). Mustard plants show
imilar effects (Sangster et al., 2004).

In business, Christensen (1997) noticed a puzzling pattern:
ndustry leaders commonly lost their lead when new technolo-
ies came along. For example, the companies that sold the most
4-in. disk drives did not become the companies that sold the
ost 8-in. drives. The leaders in 8-in. drives did not become the

eaders in 5.25-in. drives. And so on. He found similar exam-
les in retailing, computers, mechanical excavators, and steel
ills. Christensen’s research suggested that the reason for this

attern was that industry-leading companies were “held cap-
ive by their customers” (p. 18)—that is, by their success and
y “expected rewards” (p. 32). They did not vary enough what
hey did. Less successful companies were more adventurous.
urowiecki (2003, p. 46) gave a within-company example of the
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same thing: “Once Boeing became the dominant player in the
aviation market, in the seventies, it lost its appetite for sporty bets
(involving the manufacture of new airplanes): why risk them,
when profits were rolling in?” Battelle (2005) tells a similar
story about the leaders of Excite, an early Web search business.
“Because of their early success, they were closed-minded,” Bat-
telle quotes someone as saying (p. 55). “Nothing deceives like
success,” says someone else (Battelle, 2005, p. 55). To not invest
enough in new technologies could be fatal; companies that lost
their lead when a new technology arrived often went out of busi-
ness. That technology changes and one must keep up is not a
subtle point. Presumably most of the leaders in these companies
knew this. They just did not act on it, as if a hard-wired tendency
overrode common sense.

5.3. Methodology

The main methodological contribution of this work is to show
how to study variation using widely available equipment and an
“ordinary” response. No procedural changes are needed. Any
bar-pressing experiment can study variation if bar-press dura-
tions are measured.

One reason to transform one’s data (Behrens, 1997) – use
log x instead of x, for example – is to make regularities easier
to see. In the analysis of Experiment 1, transformation had this
effect. Transformation of the histogram (x to log x, y to log y) in
F
m
w
t
b
t

5

n
i
t
e
l

M
p
a
c
c
c
d
i
r
g
o
o
I
(
r

This increased the rate of long-duration (>2 s) bar presses. From
early in the trial to late in the trial, the rate of all bar presses
decreased by a factor of about 10 (upper panel of Fig. 1). The
fraction of all bar presses that were long-duration (duration > 2 s)
increased by a factor of about 100 (Fig. 4). Thus the rate of long-
duration bar presses increased by a factor of about 10.

The effects we observed also imply that some responses
can be generated and maintained by the effects of other
responses—making the usual definition of instrumental learning
(responses maintained by their consequences, e.g., Dickinson,
1994) too narrow. During acquisition, the mean duration of bar
presses decreased considerably (Gharib et al., 2001). If we think
of short-duration bar presses as skilled bar presses, in the begin-
ning it is the consequences of long (unskilled) bar presses that
generated short bar presses. After the response was well-learned,
the situation reversed: the consequences of short bar presses (fre-
quent) maintained long bar presses (rare).

A more complete view of instrumental learning – including
variation as well as selection – should lead to the discovery of
new empirical rules (e.g., Experiments 1–4) and help connect
animal learning with other areas of study (e.g., genetics, busi-
ness).
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ig. 4 to simplify (linearize) the shape of the distribution made it
uch easier to see that the change from early until late in the trial
as an increase in variation. Without a suitable transformation,

his would have been much harder, perhaps impossible, to see
ecause the change in the tail (high durations) would have been
oo small.

.4. A fuller view of instrumental learning

Instrumental learning is interesting because it occurs in
ature. Lab studies try to recreate nature. From this point of view
t is not enough to say that instrumental learning involves varia-
ion as well as selection; it is important to produce a laboratory
xample where variation was clearly controlled by something
ikely to vary in nature. This is what Experiment 4 accomplished.

The usual view of instrumental learning (Dickinson, 1994;
ackintosh, 1983; “selection by consequences”, Skinner, 1981,

. 501) is too simple. Instrumental learning involves variation
s well as selection, and consequences control both. Because
onsequences control variation, whether a response is rewarded
an have a big effect on the rate of other responses. Some of these
onnections are obvious: yes, if the rate of one response goes
own, the rate of all other behaviors (added together) will go up,
f the animal remains equally active. Yes, if one response is not
ewarded and its rate goes down, the rate of similar responses will
o down (generalization). The dependency we saw was neither
f these: it was that when a response was not rewarded, the rate
f similar responses went up in some cases. This is not obvious.
n Experiments 1–4, almost all bar presses were short-duration
<1 s). To reduce the probability of reward was, in effect, to
educe the probability of reward of short-duration bar presses.
We thank Steven Derby, Michelle Dokey, Christopher Gade,
onathan Herberg, and Brian Louie for their help.
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